ELK 스택을 이용해서 플라스크의 로그를 남기자 Logging Flask Applications with ELK Stack
ELK란?
ELK 는, Elastic search, Logstash, Kibana의 세가지 오픈소스 프로젝트의 약자이다
각 프로젝트가 연동되어 데이터 수집 및 분석 툴로 사용 할 수 있다
프로젝트 다운로드(선택)
$ git clone https://github.com/paullee714/ELK-docker-python.git
프로젝트 구조
ELK-docker-python
├── README.md
├── docker-elk
│ ├── LICENSE
│ ├── README.md
│ ├── docker-compose.yml
│ ├── docker-stack.yml
│ ├── elasticsearch
│ ├── extensions
│ ├── kibana
│ └── logstash
├── elk-flask
│ ├── __pycache__
│ ├── app.py
│ ├── elk_lib
│ └── route
├── requirements.txt
└── venv
├── bin
├── lib
└── pyvenv.cfg
ELK 설정하기 - Docker
프로젝트 폴더 안에 있는 docker-elk 디렉터리로 들어가 docker-compose를 실행시켜준다
$ cd docker-elk
$ docker-compose build && docker-compose up -d
실행결과
➜ docker-elk git:(develop) docker-compose build && docker-compose up -d
Building elasticsearch
Step 1/2 : ARG ELK_VERSION
Step 2/2 : FROM docker.elastic.co/elasticsearch/elasticsearch:${ELK_VERSION}
---> f29a1ee41030
Successfully built f29a1ee41030
Successfully tagged docker-elk_elasticsearch:latest
Building logstash
Step 1/2 : ARG ELK_VERSION
Step 2/2 : FROM docker.elastic.co/logstash/logstash:${ELK_VERSION}
---> fa5b3b1e9757
Successfully built fa5b3b1e9757
Successfully tagged docker-elk_logstash:latest
Building kibana
Step 1/2 : ARG ELK_VERSION
Step 2/2 : FROM docker.elastic.co/kibana/kibana:${ELK_VERSION}
---> f70986bc5191
Successfully built f70986bc5191
Successfully tagged docker-elk_kibana:latest
Starting docker-elk_elasticsearch_1 ... done
Starting docker-elk_kibana_1 ... done
Starting docker-elk_logstash_1 ... done
docker ps로 확인 해 주자
➜ docker-elk git:(develop) docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
ae318f58a9af docker-elk_logstash "/usr/local/bin/dock…" 2 days ago Up 47 seconds 0.0.0.0:5000->5000/tcp, 0.0.0.0:9600->9600/tcp, 0.0.0.0:5000->5000/udp, 5044/tcp docker-elk_logstash_1
00a032b5c5c4 docker-elk_kibana "/usr/local/bin/dumb…" 2 days ago Up 47 seconds 0.0.0.0:5601->5601/tcp docker-elk_kibana_1
3b62a3ba2e21 docker-elk_elasticsearch "/usr/local/bin/dock…" 2 days ago Up 47 seconds 0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp docker-elk_elasticsearch_1
ELK port 설정
docker ps 로 확인 해 보았을 때 각각의 port는 다음과 같다
Elastic Search : 9200, 9300 Logstash : 5000, 9600 Kibana : 5601
docker-compose.yml파일과 각 config파일을 확인해보자
아래의 docker-compose.yml 파일을 보면, 각각 service들의 config파일들의 설정을 가져와서 설정한다.
Elastic Search : /elasticsearch/config/elasticsearch.yml Logstash : /logstash/config/logstash.yml Kibana : /kibana/config/kibana.yml
docker-elk docker-compose.yml file
```docker
# /ELK-docker-python/docker-elk/docker-compose.yml
version: '3.2'
services:
elasticsearch:
build:
context: elasticsearch/
args:
ELK_VERSION: $ELK_VERSION
volumes:
- type: bind
source: ./elasticsearch/config/elasticsearch.yml
target: /usr/share/elasticsearch/config/elasticsearch.yml
read_only: true
- type: volume
source: elasticsearch
target: /usr/share/elasticsearch/data
ports:
- "9200:9200"
- "9300:9300"
environment:
ES_JAVA_OPTS: "-Xmx256m -Xms256m"
ELASTIC_PASSWORD: changeme
# Use single node discovery in order to disable production mode and avoid bootstrap checks
# see https://www.elastic.co/guide/en/elasticsearch/reference/current/bootstrap-checks.html
discovery.type: single-node
networks:
- elk
logstash:
build:
context: logstash/
args:
ELK_VERSION: $ELK_VERSION
volumes:
- type: bind
source: ./logstash/config/logstash.yml
target: /usr/share/logstash/config/logstash.yml
read_only: true
- type: bind
source: ./logstash/pipeline
target: /usr/share/logstash/pipeline
read_only: true
ports:
- "5000:5000/tcp"
- "5000:5000/udp"
- "9600:9600"
environment:
LS_JAVA_OPTS: "-Xmx256m -Xms256m"
networks:
- elk
depends_on:
- elasticsearch
kibana:
build:
context: kibana/
args:
ELK_VERSION: $ELK_VERSION
volumes:
- type: bind
source: ./kibana/config/kibana.yml
target: /usr/share/kibana/config/kibana.yml
read_only: true
ports:
- "5601:5601"
networks:
- elk
depends_on:
- elasticsearch
networks:
elk:
driver: bridge
volumes:
elasticsearch:
```
Logstash 의 로깅설정
flask의 로그를 받는 것은 ELK스택 중, Logstash 이다.
Logstash —> Elastic Search —> Kibana(조회/분석)
그렇기 때문에 Logstash의 설정이 중요하다.
ES의 인덱스를 ‘elk-logger’ 로 설정하고 로그를 모아 봅시다
$ vim /ELK-docker-python/docker-elk/logstash/pipeline/logstash.conf
input {
tcp {
port => 5000
}
}
## Add your filters / logstash plugins configuration here
output {
elasticsearch {
hosts => "elasticsearch:9200"
user => "elastic"
password => "changeme"
index => "elk-logger"
}
}
간단한 flask 앱 만들기
-
requirements.txt
certifi==2020.4.5.1 click==7.1.2 elasticsearch==7.7.1 Flask==1.1.2 itsdangerous==1.1.0 Jinja2==2.11.2 MarkupSafe==1.1.1 python-dotenv==0.13.0 python-json-logger==0.1.11 python-logstash==0.4.6 python3-logstash==0.4.80 urllib3==1.25.9 Werkzeug==1.0.1
requirements.txt를 남겨두었다. 가상환경에서 패키지를 설치하면 flask및 여러 기타 모듈들을 사용 할 수 있다.
flask logger 설정
import logging, logstash
log_format = logging.Formatter('\n[%(levelname)s|%(name)s|%(filename)s:%(lineno)s] %(asctime)s > %(message)s')
def create_logger(logger_name):
logger = logging.getLogger(logger_name)
if len(logger.handlers) > 0:
return logger # Logger already exists
logger.setLevel(logging.INFO)
**logger.addHandler(logstash.TCPLogstashHandler('localhost', 5000, version=1))**
return logger
logger를 설정 하는 부분 중, addHandler(logstash.TCPLogstashHandler(‘localhost’,5000,version=1)) 이 logstash로 해당하는 로그를 보내겠다 라는 얘기이다.
@elk_test.route('/', methods=['GET'])
def elk_test_show():
logger = elk_logger.create_logger('elk-test-logger')
logger.info('hello elk-test-logstash')
return "hello world!"
로깅을 남기는 메서드를 만들어 로그를 전달하면 된다.
kibana에서 확인하기
각각의 config파일에서 id,pw를 설정 한 대로 로그인 하면 된다.
설정파일을 따로 바꾸지 않았다면, id는 elastic, pw는 changeme 이다

로그인 후, index pattern과 데이터가 잘 들어가 있는 것을 확인 할 수 있다.

$ docker-compose down

위의 명령어로 프로세스를 종료 해줍니다 :D
What is ELK?
ELK is an acronym for three open-source projects: Elasticsearch, Logstash, and Kibana.
Each project works together and can be used as a data collection and analysis tool.
Download Project (Optional)
$ git clone https://github.com/paullee714/ELK-docker-python.git
Project Structure
ELK-docker-python
├── README.md
├── docker-elk
│ ├── LICENSE
│ ├── README.md
│ ├── docker-compose.yml
│ ├── docker-stack.yml
│ ├── elasticsearch
│ ├── extensions
│ ├── kibana
│ └── logstash
├── elk-flask
│ ├── __pycache__
│ ├── app.py
│ ├── elk_lib
│ └── route
├── requirements.txt
└── venv
├── bin
├── lib
└── pyvenv.cfg
Setting Up ELK - Docker
Go into the docker-elk directory inside the project folder and run docker-compose.
$ cd docker-elk
$ docker-compose build && docker-compose up -d
Execution Result
➜ docker-elk git:(develop) docker-compose build && docker-compose up -d
Building elasticsearch
Step 1/2 : ARG ELK_VERSION
Step 2/2 : FROM docker.elastic.co/elasticsearch/elasticsearch:${ELK_VERSION}
---> f29a1ee41030
Successfully built f29a1ee41030
Successfully tagged docker-elk_elasticsearch:latest
Building logstash
Step 1/2 : ARG ELK_VERSION
Step 2/2 : FROM docker.elastic.co/logstash/logstash:${ELK_VERSION}
---> fa5b3b1e9757
Successfully built fa5b3b1e9757
Successfully tagged docker-elk_logstash:latest
Building kibana
Step 1/2 : ARG ELK_VERSION
Step 2/2 : FROM docker.elastic.co/kibana/kibana:${ELK_VERSION}
---> f70986bc5191
Successfully built f70986bc5191
Successfully tagged docker-elk_kibana:latest
Starting docker-elk_elasticsearch_1 ... done
Starting docker-elk_kibana_1 ... done
Starting docker-elk_logstash_1 ... done
Let’s verify with docker ps
➜ docker-elk git:(develop) docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
ae318f58a9af docker-elk_logstash "/usr/local/bin/dock…" 2 days ago Up 47 seconds 0.0.0.0:5000->5000/tcp, 0.0.0.0:9600->9600/tcp, 0.0.0.0:5000->5000/udp, 5044/tcp docker-elk_logstash_1
00a032b5c5c4 docker-elk_kibana "/usr/local/bin/dumb…" 2 days ago Up 47 seconds 0.0.0.0:5601->5601/tcp docker-elk_kibana_1
3b62a3ba2e21 docker-elk_elasticsearch "/usr/local/bin/dock…" 2 days ago Up 47 seconds 0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp docker-elk_elasticsearch_1
ELK Port Configuration
When checking with docker ps, each port is as follows:
Elasticsearch: 9200, 9300 Logstash: 5000, 9600 Kibana: 5601
Let’s check the docker-compose.yml file and each config file.
Looking at the docker-compose.yml file below, it pulls and sets the configuration from each service’s config files.
Elasticsearch: /elasticsearch/config/elasticsearch.yml Logstash: /logstash/config/logstash.yml Kibana: /kibana/config/kibana.yml
docker-elk docker-compose.yml file
```docker
# /ELK-docker-python/docker-elk/docker-compose.yml
version: '3.2'
services:
elasticsearch:
build:
context: elasticsearch/
args:
ELK_VERSION: $ELK_VERSION
volumes:
- type: bind
source: ./elasticsearch/config/elasticsearch.yml
target: /usr/share/elasticsearch/config/elasticsearch.yml
read_only: true
- type: volume
source: elasticsearch
target: /usr/share/elasticsearch/data
ports:
- "9200:9200"
- "9300:9300"
environment:
ES_JAVA_OPTS: "-Xmx256m -Xms256m"
ELASTIC_PASSWORD: changeme
# Use single node discovery in order to disable production mode and avoid bootstrap checks
# see https://www.elastic.co/guide/en/elasticsearch/reference/current/bootstrap-checks.html
discovery.type: single-node
networks:
- elk
logstash:
build:
context: logstash/
args:
ELK_VERSION: $ELK_VERSION
volumes:
- type: bind
source: ./logstash/config/logstash.yml
target: /usr/share/logstash/config/logstash.yml
read_only: true
- type: bind
source: ./logstash/pipeline
target: /usr/share/logstash/pipeline
read_only: true
ports:
- "5000:5000/tcp"
- "5000:5000/udp"
- "9600:9600"
environment:
LS_JAVA_OPTS: "-Xmx256m -Xms256m"
networks:
- elk
depends_on:
- elasticsearch
kibana:
build:
context: kibana/
args:
ELK_VERSION: $ELK_VERSION
volumes:
- type: bind
source: ./kibana/config/kibana.yml
target: /usr/share/kibana/config/kibana.yml
read_only: true
ports:
- "5601:5601"
networks:
- elk
depends_on:
- elasticsearch
networks:
elk:
driver: bridge
volumes:
elasticsearch:
```
Logstash Logging Configuration
Logstash is the component of the ELK stack that receives Flask logs.
Logstash —> Elasticsearch —> Kibana (query/analysis)
That’s why Logstash configuration is important.
Let’s set the ES index to ‘elk-logger’ and collect logs.
$ vim /ELK-docker-python/docker-elk/logstash/pipeline/logstash.conf
input {
tcp {
port => 5000
}
}
## Add your filters / logstash plugins configuration here
output {
elasticsearch {
hosts => "elasticsearch:9200"
user => "elastic"
password => "changeme"
index => "elk-logger"
}
}
Creating a Simple Flask App
-
requirements.txt
certifi==2020.4.5.1 click==7.1.2 elasticsearch==7.7.1 Flask==1.1.2 itsdangerous==1.1.0 Jinja2==2.11.2 MarkupSafe==1.1.1 python-dotenv==0.13.0 python-json-logger==0.1.11 python-logstash==0.4.6 python3-logstash==0.4.80 urllib3==1.25.9 Werkzeug==1.0.1
I’ve included the requirements.txt. Installing packages in a virtual environment will allow you to use Flask and various other modules.
Flask Logger Configuration
import logging, logstash
log_format = logging.Formatter('\n[%(levelname)s|%(name)s|%(filename)s:%(lineno)s] %(asctime)s > %(message)s')
def create_logger(logger_name):
logger = logging.getLogger(logger_name)
if len(logger.handlers) > 0:
return logger # Logger already exists
logger.setLevel(logging.INFO)
**logger.addHandler(logstash.TCPLogstashHandler('localhost', 5000, version=1))**
return logger
In the logger configuration, addHandler(logstash.TCPLogstashHandler(‘localhost’,5000,version=1)) means that logs will be sent to Logstash.
@elk_test.route('/', methods=['GET'])
def elk_test_show():
logger = elk_logger.create_logger('elk-test-logger')
logger.info('hello elk-test-logstash')
return "hello world!"
Create a method that logs and pass the logs.
Checking in Kibana
Log in with the id and pw set in each config file.
If you haven’t changed the config file, the id is elastic and the pw is changeme.

After logging in, you can verify that the index pattern and data are properly stored.

$ docker-compose down

Terminate the process with the command above :D
댓글남기기